
1/23

Overview of sink types

See the various details of each sink type.

Operator attributes and sink types

There are many forms of information you can get about traffic data passing through a certain

operator. You may want statistical data about speed or acceleration of all passing traffic, or

maybe a speed heatmap. From the standpoint of the server’s HTTP response, the

sink’s type denotes the contents of each sink’s data object – the names and data types of its

member variables. It also denotes additional parameters that may be a part of sink output

requests. The attribute that the sink is attached to decides the values of these members. The

following table shows a list of all attributes that all operators have along with their associated

sink type.

2/23

Filter attribute Sink type

Object count Value

Level of service Value

Speed Statistical value

Stationary time Statistical value

Duration of occurrence Statistical value

Trajectory list Table

Trajectory view Trajectory view

Category distribution Distribution

Color distribution Distribution

Speed map Heatmap

Acceleration map Heatmap

Occupancy map Heatmap

OD matrix OD matrix

Raw trajectory data Raw trajectories

Light vs. heavy data

The sinks are categorized as light data or heavy data sinks. This reflects how large their data

responses tend to be in general. To prevent sink data responses from growing out of

proportion, it's only possible to request outputs from one heavy data sink at a time. In other

words, when requesting for a heavy data sink output, no other light data or heavy data sink

output can be requested.

Details of sink types

In this section, you will find detailed descriptions of each sink type. The

properties data_validity, evaluation_validity, and object_count are common for all sink types.

They're all explained in the previous article.

https://swisstraffic.ch/ai-help/docs/Using%20REST%20sinks%20for%20traffic%20data%20retrieval.pdf

3/23

Value

JSON type identifier: value

History supported: Yes

Output heaviness: Light data

Additional request parameters: None

Response's data object contents: A single numerical value

Example of response's data contents:

JSON

"data": {

 "data_validity": "ok",

 "evaluation_validity":"ok",

 "object_count": 57,

 "value": 57

}

Statistical value

JSON type identifier: statistical_value

History supported: Yes

Output heaviness: Light data

Additional request parameters: None

Response's data object contents: A collection of key/value pairs. The values are always a

single number. The keys designate: Minimum value, maximum value, median, average, mode,

variance, and size (number of samples). Size is currently redundant and has the same value

as object_count.

Example of response's data contents: JSON

"data": {

 "data_validity": "ok",

 "evaluation_validity":"ok",

 "object_count": 624,

 "minimum": 0.0,

 "maximum": 51.6,

 "median": 41.1,

 "average": 40.2,

 "size": 624

}

4/23

Table

Tables are currently limited to hold up to 10,000 records of closed trajectories. There's no

limit for additional open trajectories. Sending all of them at once can be demanding on the

hardware and bandwidth. That's why each response will hold a maximum of 100 table

records. In order to obtain further rows, you need to include further parameters in your data

request. By default, tables are ordered by the "Trajectory start" column in ascending order.

JSON type identifier: table

History supported: No

Output heaviness: Heavy data

Additional request parameters:

• number_of_rows - maximum number of rows you want to receive in one page. The

actual received number can be lower if there are not enough rows in the table, or if

you provided a number greater than 100.

• first_row_index - the row index at which the returned page shall start

• order_by - the name of column by which you want the page to be ordered. You can

see column names in the response example below in the header array. The table is

ordered before a page is extracted.

• order - either ascending, or descending

(All of these parameters are optional.)

Example request body:

JSON

{

 "sequence_number": "11",

 "sinks": [

 {

 "id": 0,

 "number_of_rows": 100,

 "first_row_index": 200,

 "order_by": "Maximum speed",

 "order": "descending"

 }

]

}

5/23

Response's data object contents:

• table_size - total number of rows in the table; currently redundant and synonymous

with object_count

• number_of_rows - number of rows in the current page

• header - an array of strings designating the names of table columns. You can read

more about the Gap time, Gap distance, and Section speed colums in a dedicated

article.

• units - the measurement units used in each column. kpx are kilopixels. Positions and

sizes are in normalized screen coordinates - values from 0.0 to 1.0 where 0.0 is in the

upper left corner of the image.

• formats - the data types and formats of each column. The float type also states the

number of decimal places. The datetime type specifies a format according to Qt's

format strings for date and time.

• data_start - the value of the column of the first row in the returned page, always as a

string. If the table is ordered by "Trajectory start", then this property is instead

named data_start_time.

• data_end - the value of the column of the last row in the returned page, always as a

string. If the table is ordered by "Trajectory start", then this property is instead

named data_end_time.

• order - either ascending, or descending

• data - an array of arrays, each containing one table row

See the Trajectory view sink for a list of possible values in the Category column.

Example of response's data contents: JSON

"data": {

 "data_validity": "ok",

 "evaluation_validity": "ok",

 "object_count": 16,

 "data_end_time": "1618991959204",

 "data_start_time": "1618990159105",

 "first_row_index": 0,

 "number_of_rows": 16,

 "order": "ascending",

 "table_size": 16,

https://swisstraffic.ch/ai-help/docs/How%20to%20measure%20section%20speed%20and%20gap%20times%20and%20gather%20traffic%20event%20evidence.pdf
https://swisstraffic.ch/ai-help/docs/How%20to%20measure%20section%20speed%20and%20gap%20times%20and%20gather%20traffic%20event%20evidence.pdf
https://doc.qt.io/qt-5/qdate.html#fromString-2
https://doc.qt.io/qt-5/qtime.html#toString
https://swisstraffic.ch/ai-help/docs/overview%20of%20sink%20types

6/23

 "header": ["ID", "License plate", "Category", "Color",

 "Trajectory start", "Trajectory end", "Average speed",

 "Minimum speed", "Maximum speed", "Section speed",

 "Average acceleration", "Gap time", "Gap distance",

 "Duration of occurrence", "Stationary duration",

 "Last position X", "Last position Y",

 "Last bounding box X", "Last bounding box Y",

 "Last bounding box width", "Last bounding box height"],

 "units": ["", "", "", "", "ms", "ms", "kpx/h", "kpx/h",

 "kpx/h", "km/h", "px/s²", "s", "px", "s", "s",

 "", "", "", "", "", ""],

 "formats": ["int", "string", "string", "string",

 "datetime;yyyy-MM-dd hh:mm:ss",

 "datetime;yyyy-MM-dd hh:mm:ss",

 "float;0", "float;0", "float;0", "float;0",

 "float;1", "float;2", "float;0", "float;2",

 "float;2", "float;6", "float;6", "float;6",

 "float;6", "float;6", "float;6"],

 "data": [

 ["5", "Undefined", "pedestrian", "undefined", "1618990434162",

 "1618990442603", "162.32", "13.31", "719.34", "-", "0.97",

 "-", "-", "54.59", "31.40", "0.984672", "0.768475",

 "0.984672", "0.768475", "0.014019", "0.069893"],

 ["8", "Undefined", "car", "white", "1685370299216",

 "1685370338389", "173.54", "26.60", "581.06", "-", "1.55",

 "-", "-", "39.17", "18.48", "0.133255", "0.104881",

 "0.134138", "0.103832", "0.055505", "0.073010"],

 // ...

]

}

7/23

Distribution

JSON type identifier: distribution

History supported: Yes

Output heaviness: Light data

Additional request parameters: None

Response's data object contents: A collection of key/value pairs, where keys are histogram

categories (classes), and values are single numerical values. The possible categories depend

on swissTRAFFIC AI node's current configuration. You can find them out with the Camera

information request.

Example of response's data contents for a category distribution :

JSON

"data": {

 "data_validity": "ok",

 "evaluation_validity":"ok",

 "object_count": 130,

 "categories": [

 {

 "category": "bicycle",

 "count": 13

 },

 {

 "category": "bus",

 "count": 3

 },

 {

 "category": "car",

 "count": 74

 },

 {

 "category": "light",

 "count": 11

 },

https://swisstraffic.ch/ai-help/docs/Basic%20communication%20with%20swissTRAFFIC%20AI%20REST%20API.pdf
https://swisstraffic.ch/ai-help/docs/Basic%20communication%20with%20swissTRAFFIC%20AI%20REST%20API.pdf

8/23

 {

 "category": "pedestrian",

 "count": 29

 },

 {

 "category": "unknown",

 "count": 0

 }

]

}

Example of response’s data contents for a color distribution:

JSON

"data": {

 "data_validity": "ok",

 "evaluation_validity":"ok",

 "object_count": 14,

 "colors": [

 {

 "color": "black",

 "count": 4

 },

 {

 "color": "blue",

 "count": 0

 },

 {

 "color": "brown",

 "count": 0

 },

 {

9/23

 "color": "red",

 "count": 1

 },

 {

 "color": "silver",

 "count": 2

 },

 {

 "color": "undefined",

 "count": 7

 }

]

}

Trajectory view

JSON type identifier: trajectory_view

History supported: No

Output heaviness: Heavy data

Additional request parameters: None

Response's data object contents:

• rendered - denotes whether the outputs are PNG images, or raw data. This will always

be set to true.

• rendered_trajectories - an array of objects, which contain:

o data - a string containing a Base64 representation of a PNG image. This image

is a visualization of all selected trajectories of the corresponding category over

a transparent background.

o category - a string denoting a category whose trajectories are rendered in the

corresponding image. The possible values and the corresponding rendered

color are:

▪ car - #7CFF2E

▪ van - #2BF000

▪ light (Light truck) - #00C800

▪ heavy (Heavy truck) - #007D00

▪ tractor - #04BC80

https://en.wikipedia.org/wiki/Base64

10/23

▪ bus - #07FBFF

▪ car trailer - #0BDCFF

▪ caravan - #0FBDFF

▪ truck trailer - #129EFF

▪ tuk-tuk - #167FFF

▪ e-cart - #195FFF

▪ motorcycle - #0000FF

▪ scooter - #3200FF

▪ bicycle - #6400FF

▪ skate - #B200FF

▪ pedestrian - #FF00FF

▪ head - #FF3DC3

▪ pram - #FF7787

▪ wheelchair - #FFB34B

▪ animal - #FFEE0F

▪ tram - #00D3FE

▪ obstacle - #7F0000

▪ unknown - #000000

• If there are no objects to be rendered for a given category, or the category is not

supported by the swissTRAFFIC AI node, the whole object will be omitted in

the rendered_trajectories array. E.g. in the example below, categories bus, motorcycle,

and e-cart have been omitted and the other categories are not supported.

11/23

Example of response's data contents:

JSON

"data": {

 "data_validity": "ok",

 "evaluation_validity": "ok",

 "object_count": 17,

 "timestamp": "1619697039715",

 "rendered": true,

 "rendered_trajectories": [

 {

 "category": "unknown",

 "data": "iVBORw0KGgoAAAANSUhEUgAA", // ...

 },

 {

 "category": "car",

 "data": "iVBORw0KGgoAAAANSUhEUgAA", // ...

 },

 {

 "category": "light",

 "data": "iVBORw0KGgoAAAANSUhEUgAA", // ...

 },

 {

 "category": "heavy",

 "data": "iVBORw0KGgoAAAANSUhEUgAA", // ...

 },

 {

 "category": "bicycle",

 "data": "iVBORw0KGgoAAAANSUhEUgAA", // ...

 },

 {

12/23

 "category": "pedestrian",

 "data": "iVBORw0KGgoAAAANSUhEUgAA", // ...

 }

]

}

Example of all trajectory view images overlaid over a video snapshot:

Comments:

• It might take a long time for a block to respond to a trajectory view sink data request.

Due to this, all trajectory view sink data requests must be sent separately - without

requests for any other sink data in the same message.

Heatmap

JSON type identifier: heatmap

History supported: No

Output heaviness: Heavy data

Additional request parameters: None

Response's data object contents: A map_type property, which can have either the Heatmap,

or Gridmap value. This section will concern the Heatmap type - Gridmap will be described in

the next one. The response also contains two matrices: sum_data and count_data. A quick

guide to parse the matrix data:

1. Decode the string from Base64.

2. Unzip with the ZLIB library's flate algorithm.

https://en.wikipedia.org/wiki/Base64
https://zlib.net/

13/23

3. Parse the first four 32-bit integers representing the number of rows, number of

columns, OpenCV element type (always 32-bit float), and number of channels (always

1) respectively.

4. Parse the 1D array of 32-bit floats representing the matrix data.

The matrices are represented as a raw 1D array of 32-bit floats, but the matrices are of the

same total size as the video image (i.e. the array's size is image_height*image_width). Each

element is a value that relates to the corresponding pixel in the original image - elements of

the sum_data matrix represent a sum of a value selected during the sink's creation (e. g.

current speed) and elements of the count_data matrix represent the number of samples.

For example, for an image with resolution 1920x1080 and Speed map type of heatmap, the

second element of sum_data would contain a sum of speeds of all trajectories that crossed

the second pixel in the first row, and the second element of the count_data matrix would

contain the number of those trajectories. Therefore, by dividing the sum value by the count

value, you can obtain the average value for the corresponding pixel in the input image.

For another example, if the image has a resolution of 1920x1080 px, then the matrices would

be represented as 1D arrays containing 1920*1080 = 2073600 elements. Element 68372 of

the array would correspond to the image pixel in a row floor (68372/1920) = 35 and

column 68372%1920 = 1172 where % represents the modulus operation.

The matrices are quite large, so each of them is compressed with the ZIP (deflate) algorithm

of the ZLIB library and encoded in Base64 before being placed into JSON response and sent.

Example of response’s data contents:

JSON

"data": {

 "object_count": 420,

 "data_validity": "ok",

 "evaluation_validity":"ok",

 "map_type": "Heatmap",

 "count_data": "TWFuIGlzIGRpc3RpbmXNoZWQsIG5vdCB5IGhpcyByZWF", // ...

 "sum_data": "WQsIG5vdCBvbmx5IGJ5IGhpcyByZWd1aXNoZWQsIG55as", // ...

 "timestamp": "1685008212409"

}

https://zlib.net/
https://en.wikipedia.org/wiki/Base64

14/23

Example of a heatmap converted to a grayscale image:

For illustration purposes, here is an example of a processed (colored) heatmap overlaid over

a corresponding video snapshot:

Comments:

• timestamp has the same meaning and value as the sink's timestamp value outside of

the data object, which is described in Getting the list of all sinks

Gridmap

Technically, gridmap is a subtype of the heatmap, but its output is a bit different, so it'll be

explained here in a separate section. See the explanation of a gridmap widget to learn what it

is. It's the same with a gridmap sink.

https://swisstraffic.ch/ai-help/docs/Using%20REST%20sinks%20for%20traffic%20data%20retrieval.pdf
https://swisstraffic.ch/ai-help/docs/Using%20widgets%20to%20view%20data%20on%20the%20dashboard%20in%20swissTRAFFIC%20AI.pdf

15/23

JSON type identifier: heatmap

History supported: No

Output heaviness: Heavy data

Additional request parameters: None

Response's data object contents: A map_type property, which can have either the Heatmap,

or Gridmap value. This section will concern the Gridmap type - Heatmap is described in the

previous one. Then there is tile_size, which denotes how many pixels are aggregated in one

grid tile in each dimension. For example, a tile_size of 50 means that each grid

aggregates 50x50=2500 pixels. Moreover, for an image of size 1920x1080, the grid

has ceil(1920/50)=39 columns and ceil(1080/50)=22 rows. (ceil() is an operation of rounding

up to the nearest integer.) Finally, the response's data object contains another data property,

which contains a JSON string with the encoded grid. A quick guide to decode it:

1. Decode the string from Base64.

2. Unzip with the ZLIB library's flate algorithm.

3. Parse the array of 32-bit floats representing the matrix data.

Tiles are stored in a row-major order. Each tile comprises of 5 32-bit floats: Minimum,

maximum, average, median, and object count. These statistical values are tied to the operator

attribute that's been set for the sink: speed, acceleration, object count etc.

Example of response’s data contents:

JSON

"data": {

 "object_count": 420,

 "data_validity": "ok",

 "evaluation_validity": "ok",

 "map_type": "Gridmap",

 "source_height": 1520,

 "source_width": 2704,

 "tile_size": 50,

 "data": "eJzsnHlQFVcWhzsKQUFxQ1xxgR" // ...

}

https://en.wikipedia.org/wiki/Base64
https://zlib.net/

16/23

Example of a gridmap displayed as a widget in swissTRAFFIC AI Insights:

OD matrix

OD matrix functionality is explained in a dedicated how-to article.

JSON type identifier: od_matrix

History supported: Yes (in all time modes), the number of records is limited to 1000

Output heaviness: Light data

Additional request parameters: None

Response's data object contents:

• origins - an array of entry gates (user name and ID)

• destinations - an array of exit gates (user name and ID)

• turning_movements - rows of turning counts

The data have a row-oriented format where the rows represent entry/origin gates. The

columns are exit/destination gates. The order of the elements in the headers

(origins/destinations) corresponds to the order of the data in the turning_movements section.

Maximum size is 8x8.

Example of response’s data contents:

(the size of the OD matrix is 1x2 i.e. 1 entry and 2 exits)

JSON

"data": {

 "data_validity": "ok",

 "evaluation_validity": "ok",

 "object_count": 604,

 "origins": [// OD origins/entries

https://swisstraffic.ch/ai-help/docs/Creating%20an%20OD%20matrix%20-%20How-To%20Series%20in%20swissTRAFFIC%20AI.pdf

17/23

 {

 "id": 1, // id of the entry gate

 "name": "In" // name of the entry gate

 }

],

 "destinations": [// OD destinations/exits

 {

 "id": 3, // id of the exit gate (generated by swissTRAFFIC AI)

 "name": "Out 1" // name of the gate (defined by user)

 },

 {

 "id": 4,

 "name": "Out 2"

 }

],

 "turning_movements": [// data is entry/row-oriented

 {

 "category": "car",

 "data": [

 [0, 5025] // In -> Out 1: 0; In -> Out 2: 5025

]

 },

 {

 "category": "pedestrian",

 "data": [

 [0, 19] // In -> Out 1: 0; In -> Out 2: 19

]

 },

 // ...the rest of all supported categories

]

18/23

]

}

Raw trajectories

This sink shows you the evolution of traffic objects' trajectories.

JSON type identifier: raw_trajectories

History supported: No

Output heaviness: Heavy data

Additional request parameters: None

Response's data object contents:

JSON

{

 "data_validity": "ok",

 "evaluation_validity": "ok",

 "object_count": 1329,

 "trajectories": [

 {

 "color": "white",

 "duration": 39142,

 "id": "8",

 "license_plate": "",

 "last_detection_score": 0.5966202020645142,

 "trajectory_score": 0.8626661896705627,

 "timestamp": "1650529144653",

 "category": "car",

 "state_data": {

 "timestamps": [

 0,

 368,

 // ...

],

 "map_positions": [

19/23

 [615951.5625, 5453988.5],

 [615951.8125, 5453992],

 // ...

],

 "map_speeds": [

 0.09022672474384308,

 0.021549025550484657,

 // ...

],

 "map_accelerations": [

 5.666559219360352,

 -10.65473175048828,

 // ...

],

 "map_speed_angles": [

 5.109283447265625,

 5.166502952575684,

 // ...

],

 "wgs84_positions": [

 [16.59258449695335, 49.22769412627738],

 [16.592588941067113, 49.22772555017891],

 // ...

],

 "sensor_positions": [

 [0.11871673911809921, 0.1282760351896286],

 [0.12449279427528381, 0.12761197984218597],

 // ...

],

 "bounding_boxes": [

20/23

 [

 0.25482144951820374, 0.2587209641933441,

 0.27610158920288086, 0.29117339849472046

],

 [

 0.2526055872440338, 0.2627129852771759,

 0.28182610869407654, 0.29768529534339905

],

 // ...

]

 }

 },

 // ...

]

}

Comments:

• trajectories - information about the traffic objects outputted by the sink

o color - the general color of the traffic object

o duration - how long the traffic object has been in the scene

o id - the traffic object's unique identifier within the analytics

o license_plate - the license plate contents of the traffic object. If none have

been detected, the value is an empty string.

o timestamp - the timestamp of the moment when this object has been

detected for the first time in milliseconds since epoch

o category - the traffic object's category

o last_detection_score - the most recent detection confidence of the traffic

object normalized to the interval 0.0-1.0

o trajectory_score - the average of the last several detection confidence scores

normalized to the interval 0.0-1.0

o state_data - data about the traffic object's properties that change with time

21/23

▪ map_positions - only available in georegistered analytics. This array contains

the traffic object's positions within its corresponding UTM zone. The first

element of the position array is the x coordinate, the second element is

the y coordinate.

▪ map_speeds - only available in georegistered analytics. This array contains the

traffic object's speeds in m/s.

▪ map_accelerations - only available in georegistered analytics. This array

contains the traffic object's acceleration in m/s².

▪ map_speed_angles - only available in georegistered analytics. This array

contains the traffic object's azimuths within its corresponding UTM zone in

radians, with the value 0 denoting direction to the right (along the x axis).

▪ timestamps - the amount of milliseconds that has passed between the

moment when this object has been detected for the first time and the moment

that the other state_data properties correspond to.

▪ wgs84_positions - the position of the traffic object within the WGS

84 coordinate system. Only available in georegistered analytics. The first array

element is the longitude, the second is latitude. They're expressed as positive

or negative numbers. Positive latitude is above the equator (N), and negative

latitude is below the equator (S). Positive longitude is east of the prime

meridian, while negative longitude is west of the prime meridian (a north-

south line that runs through a point in England).

▪ sensor_positions - the position of the traffic object within the sensor's

normalized coordinate space. The first array element is the x coordinate, the

second is the y coordinate. E.g. in a camera image, the

coordinates [0,0] correspond to the upper left corner.

▪ sensor_speeds - only available in non-georegistered analytics. This array

contains the traffic object's speeds in px/s.

▪ sensor_acceleration - only available in non-georegistered analytics. This array

contains the traffic object's accelerations in px/s².

▪ sensor_speed_angles - only available in non-georegistered analytics. This array

contains the traffic object's orientation within the sensor coordinate space in

radians, with the value 0 denoting direction to the right (along the x axis).

▪ bounding_boxes - this array contains sub-arrays, where each sub-array

denotes an object's bounding box properties using 4 doubles with semantics

in the following order: top left point's x coordinate, top left's y, bottom right's

x, bottom right's y. The coordinates are normalized screen coordinates (values

from 0 to 1 with [0,0] being in the upper left corner).

https://swisstraffic.ch/ai-help/docs/Georegistration%20in%20swissTRAFFIC%20AI%20-%20Get%20speed%20data%20and%20more.pdf
https://en.wikipedia.org/wiki/World_Geodetic_System
https://en.wikipedia.org/wiki/World_Geodetic_System

22/23

Trajectory file sink

This is a special type of sink that lets users of swissTRAFFIC AI Insights export observed

trajectories into a .tlgx file. It's not possible to interact with it through the REST API -

requesting data of this sink returns an empty result.

JSON type identifier: file

Measurement units guide

What units do different sinks and attributes give you?

Sink type Attribute Unit

Value Object count Pure number (unitless)

Level of

service
Pure number (unitless)

Statistical

value

Duration of

occurrence
[m/s]

Stationary

duration
[m/s]

 Speed
[kpx/s] (kilopixels per second) if using non-georegistered

footage and [m/s] for georegistered footage

Table Trajectory list

Table has a descriptive header. All time data is in [s]

except Trajectory start and Trajectory ends which have the

[datetime] format. Speed in [kpx/h] if not georegistered

or [km/h] when georegistered. Positions and sizes are in

normalized screen coordinates - values from 0.0 to 1.0

where 0.0 is in the upper left corner of the image. For

more details, see the table sink description.

Distribution Color Pure number (unitless)

 Category Pure number (unitless)

https://swisstraffic.ch/ai-help/docs/Overview%20of%20sink%20types.pdf

23/23

Sink type Attribute Unit

Heatmap Speed

Heatmap has a set of 2 values for each pixel

– sum_data value and a count_data value.

sum_data is the sum of speeds recorded in a given pixel

and uses [kpx/s] for non-georegistered footage and [m/s]

for georegistered footage

count_data is the number of objects that passed through

that pixel and is, therefore, a unitless value

 Acceleration
Same as with speed, but the units are [kpx/s^2] and

[m/s^2].

 Occupancy

sum_data is the number of objects that passed through

the pixel

count_data is equal to 1 if at least one object has been

detected there, otherwise, the value is 0

Both of these values are unitless.

Raw

trajectories

Raw

trajectory

data

See the units property inside the data response.

What next?

Learn more about sinks' data history.

Need more help or have some questions? Contact us!

https://swisstraffic.ch/ai-help/docs/Sink%20history%20-%20time%20series.pdf
https://www.swisstraffic.ch/en/kontakt

